Keyword

ANTARCTICA

22020 record(s)
 
Type of resources
Topics
INSPIRE themes
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
From 1 - 10 / 22020
  • During austral summer1994/95, the National Institute of Oceanography and Applied Geophysics - OGS, on board the research vessel OGS-Explora, conducted marine geological and geophysical surveys along the Antarctic Peninsula. The ANGELINA (ANtarctic GEophysical Long range INternational Acquisition) programme was a seismic exploration cruise in the Adelaide Fracture Zone on the Pacific Margin, near Marguerite Bay and Adelaide Island; data were collected between longitude 68 and 74 degrees West, and latitude 66 and 69 degrees South. During this programme 610 km of 20-fold multichannel seismic reflection (MCS) data, 20 second records, 4 ms sample rate, were recorded on a SERCEL SN 358 DMX system. The source consisted of an airgun array with a total volume of 75 litres fired every 75 meters into a 3000 m cable consisting of 120 hydrophone groups towed at an average depth of 10 m. A GPS + TRANSIT satellite receiver system was used for navigation. The Chief Scientist on this programme was: Michele Pipan of the Dipartimento di Scienze Geologiche Ambientali e Marine of the Università di Trieste, via Weiss n.2, 34127 Trieste, Italy. Processing of the data generally followed a conventional sequence: Reformat, Quality control, Amplitude recovery, Deconvolution, Velocity analysis, NMO corrections, Mute, Stack, Mixing, Filter, and Dynamic trace equalisation.

  • Antarctic aquatic eukaryotic biodiversity provides an unlimited and largely unexploited source of bioactive molecules that may be utilized for the benefit of human health. The aim of our proposal is to probe antibiotic and anticancer properties of these molecules isolated from a selected panel of freshwater and marine eukaryote species, that can be sampled in the area of MZS with no impact on local biodiversity and can, in large measure, be cultivated and/or maintained in laboratory for long periods at very reduced costs. The sampling of species will be conducted on Protists (ciliates and dinoflagellates), Rotifera (bdelloids), obtaining sponge primmorphs, collecting fish body surface mucus, sequencing transcriptomes from Protists, Rotifers, Echinoderms, and Tunicates to be scanned for genes expressing antimicrobial peptides and enzymesproducing bioactive metabolites. The targets of the project are: i) to sample Protists, Rotifers and macroeukaryotes from marine and freshwater environments, ii) to culture Protists, Rotifers, andobtain demosponge primmorph cultures, iii) to sequence transcriptomes to be added to transcriptomes already obtained by the proposing groupand to identify putative candidate peptides, iv) to obtain purified biochemical fractions from Protists, Rotifers, primmorph and fish surface mucus,v) to test produced fractions and synthetic peptides for their in vitro anticancer and antibiotic activities. The proposal involves three research unitsof the Universities of La Tuscia, Trieste and Camerino, and one unit of the National Research Council in Naples. These units maintain solid and documented relationships of collaboration with a multi-year experience in Antarctic eukaryotic physiology, biochemistry and molecular biology.The proposal can also rely on the official collaboration with the laboratories of Prof. Ian Hawes and Prof. Chris Battershill from the University ofWaikato (NZ), with experience in Antarctic freshwater biology and bioactive molecules.

  • During austral summer1994/95, the National Institute of Oceanography and Applied Geophysics - OGS, on board the research vessel OGS-Explora, conducted marine geological and geophysical surveys along the Antarctic Peninsula. The ANGELINA (ANtarctic GEophysical Long range INternational Acquisition) programme was a seismic exploration cruise in the Adelaide Fracture Zone on the Pacific Margin, near Marguerite Bay and Adelaide Island; data were collected between longitude 68 and 74 degrees West, and latitude 66 and 69 degrees South. During this programme 610 km of 20-fold multichannel seismic reflection (MCS) data, 20 second records, 4 ms sample rate, were recorded on a SERCEL SN 358 DMX system. The source consisted of an airgun array with a total volume of 75 litres fired every 75 meters into a 3000 m cable consisting of 120 hydrophone groups towed at an average depth of 10 m. A GPS + TRANSIT satellite receiver system was used for navigation. The Chief Scientist on this programme was: Michele Pipan of the Dipartimento di Scienze Geologiche Ambientali e Marine of the Università di Trieste, via Weiss n.2, 34127 Trieste, Italy. Processing of the data generally followed a conventional sequence: Reformat, Quality control, Amplitude recovery, Deconvolution, Velocity analysis, NMO corrections, Mute, Stack, Mixing, Filter, and Dynamic trace equalisation.

  • During austral summer1994/95, the National Institute of Oceanography and Applied Geophysics - OGS, on board the research vessel OGS-Explora, conducted marine geological and geophysical surveys along the Antarctic Peninsula. The ANGELINA (ANtarctic GEophysical Long range INternational Acquisition) programme was a seismic exploration cruise in the Adelaide Fracture Zone on the Pacific Margin, near Marguerite Bay and Adelaide Island; data were collected between longitude 68 and 74 degrees West, and latitude 66 and 69 degrees South. During this programme 610 km of 20-fold multichannel seismic reflection (MCS) data, 20 second records, 4 ms sample rate, were recorded on a SERCEL SN 358 DMX system. The source consisted of an airgun array with a total volume of 75 litres fired every 75 meters into a 3000 m cable consisting of 120 hydrophone groups towed at an average depth of 10 m. A GPS + TRANSIT satellite receiver system was used for navigation. The Chief Scientist on this programme was: Michele Pipan of the Dipartimento di Scienze Geologiche Ambientali e Marine of the Università di Trieste, via Weiss n.2, 34127 Trieste, Italy. Processing of the data generally followed a conventional sequence: Reformat, Quality control, Amplitude recovery, Deconvolution, Velocity analysis, NMO corrections, Mute, Stack, Mixing, Filter, and Dynamic trace equalisation.

  • The DoCTOr (Dome C Tropospheric Observer) project aims to establish an integrated monitoring system to measure simultaneously, continuously and with a high temporal resolution the water vapor and temperature vertical profiles and the radiative exchanges vs. altitude. The monitoring will enable us to detect both long-term trends and fast-evolving phenomena, the latter useful in the interpretation of the causes of the first. This task is performed mainly through remote sensing techniques, allowing for the study of a highly unperturbed atmospheric sample. The integration of all the deployed instrumentation in a single acquisition system simplifies greatly the data analysis needed to retrieve the final products: The REFIR-PAD spectroradiometer (already operating in dome C since 2011) will provide spectrally-resolved atmospheric downwelling radiances in the mid to far-infrared spectral range, while a laser diode based profiler will characterize the microphysics state of the first 3 km of the atmosphere.A real-time data analysis system based on an atmospheric radiative transfer model will then retrieve from the acquired data the temperature and water vapor profiles and the cloud optical thickness in almost all weather conditions found at Dome C, with a temporal resolution of about 10 minutes.

  • The HF radar denominated Dome C North (DCN) emits pulses of HF waves (8–20 MHz) which are refracted in the ionosphere and can be back-scattered by field aligned decameter scale irregularities of the electron density at distances ranging from 180 to 3550 km from the radar and at heights between 100 and 400 km. The radar signals are steered in 16 emission beams, separated by 3.3 degrees, in an azimuthal interval of 52 degrees, usually swept in 2 minutes. The signals are emitted according to multi-pulse sequences that allow the real-time acquisition of the autocorrelation function of the back scatter echoes, from which the reflected power, the VD Doppler velocity of the irregularities, and the spectral width can be calculated for each distance-azimuth cell. VD coincides with the velocity of the plasma along the line of sight. DCN is part of the Super Dual Auroral Radar Network (SuperDARN). In SuperDARN, pairs of radars, typically located at 2000 km distance and oriented so that their beams cross each other over the region to be studied, are used to get the velocity vector in two dimensions. DCN forms a common-volume pair with the SuperDARN Zhongshan radar (China). SuperDARN radars are devoted to the study of ionosphere, between 100 and 400 km from ground, in the polar, auroral and medium latitude regions. The sscientific objectives of SuperDARN and DCN span from fundamental plasma physics to space weather, in the framework of Sun-Earth relations. Italy participates in the SuperDARN international network also with the Dome C East (DCE) radar,installed at Concordia in 2013 and operative since then.

  • The main objective of this project is a complete spectral characterization of cirrus and mixed phase clouds in order to evaluate the radiative models in the FIR regime, where the clouds effect is very strong, and systematic spectral measurements are scarcely available. The required spectral radiance measurements in the range 100-1000 cm-1 are acquired by the Fourier spectroradiometer REFIR-PAD, which is operative in continuous and unattended mode at Dome-C, whereas the atmospheric cloud fields are constrained with the support of a backscattering/depolarization lidar, for the estimation of the clouds position, phase, and the extinction profile, an ice and halo imager cameras, for the assessment of the cloud ice crystals micro-physics, and a micro rain radar (MRR) for the determination of the clouds reflectivity and the vertical velocity of ice crystals in the cases of precipitating clouds.

  • The main objective of this project is a complete spectral characterization of cirrus and mixed phase clouds in order to evaluate the radiative models in the FIR regime, where the clouds effect is very strong, and systematic spectral measurements are scarcely available. The required spectral radiance measurements in the range 100-1000 cm-1 are acquired by the Fourier spectroradiometer REFIR-PAD, which is operative in continuous and unattended mode at Dome-C, whereas the atmospheric cloud fields are constrained with the support of a backscattering/depolarization lidar, for the estimation of the clouds position, phase, and the extinction profile, an ice and halo imager cameras, for the assessment of the cloud ice crystals micro-physics, and a micro rain radar (MRR) for the determination of the clouds reflectivity and the vertical velocity of ice crystals in the cases of precipitating clouds.

  • The HF radar denominated Dome C East (DCE) emits pulses of HF waves (8–20 MHz) which are refracted in the ionosphere and can be back-scattered by field aligned decameter scale irregularities of the electron density at distances ranging from 180 to 3550 km from each radar and at heights between 100 and 400 km. The radar signals are steered in 16 emission beams, separated by 3.3 degrees, in an azimuthal interval of 52 degrees, usually swept in 2 minutes. The signals are emitted according to multi-pulse sequences that allow the real-time acquisition of the autocorrelation function of the back scatter echoes, from which the reflected power, the VD Doppler velocity of the irregularities, and the spectral width can be calculated for each distance-azimuth cell. VD coincides with the velocity of the plasma along the line of sight. DCE is part of the Super Dual Auroral Radar Network (SuperDARN). In SuperDARN, pairs of radars, typically located at 2000 km distance and oriented so that their beams cross each other over the region to be studied, are used to get the velocity vector in two dimensions. DCE forms a common-volume pair with the SuperDARN South Pole radar (U.S.). SuperDARN radars are devoted to the study of ionosphere, between 100 and 400 km from ground, in the polar, auroral and medium latitude regions. The SuperDARN and DCE scientific objectives span from fundamental plasma physics to space weather in the framework of Sun-Earth relations. Italy participates in the SuperDARN international network also with the Dome C North radar(DCN), installed at the Concordia station in January 2019 and operative since then.

  • Categories  

    Sedimentary rock