Keyword

IT/PNRA

7661 record(s)
 
Type of resources
INSPIRE themes
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
From 1 - 10 / 7661
  • Characterization of effective precipitation that occurs at ground of Antarctica region, plays a crucial rules in defining and validating global climate models and numerical weather prediction model. The observatory is designed to be set up at the Italian Antarctic station Mario Zucchelli integrating the current instrumentation for weather measurements with other instruments specific for precipitation observations. In particular, a 24-GHz vertical pointing radar, Micro Rain Radar, and an optical disdrometer, Parsivel will be integrated with the advanced weather stations, radiosoundings and the ceilometer. The synergetic use of the set of instruments allows for characterizing precipitation and studying properties of Antarctic precipitation such as dimension, shapes, fall behavior, density of particles, particles size distribution, particles terminal velocity, reflectivity factor and including some information on their vertical extent. The project is for four years, it started in July 2017 and will be active until July 2020, covering the Special Observation Period (SOP) in the Southern Hemisphere of Year of Polar Predicition (YOPP) period. APP can be provide specific measurements for precipitation occurring over the Antarctic coast at high temporal resolution, in particular specific snow products such as snow rate, snow depth and their water equivalent.

  • During Austral Summer1991-92 the National Institute of Oceanography and Applied Geophysics - OGS conducted marine geological and geophysical surveys over the Antarctic Peninsular and the Bransfield Strait. During this cruise approximately 3407 km of 30-fold multichannel seismic reflection (MCS) data were collected in the Antarctic Peninsular and the Bransfield Strait between longitudes 50 and 78 degrees West, and latitudes 60 and 68 degrees South. The surveys were carried out by the research vessel OGS Explora. The digital MCS data were recorded on a SERCEL SN 358 DMX system. The source consisted of an airgun array with a total volume of 71.96 litres fired approximately every 50 meters into a 3000 m cable consisting of 120 hydrophone groups towed at an average depth of 12 m. A GPS + TRANSIT satellite receiver system was used for the navigation. Processing of the data generally followed a conventional sequence: Reformat, Trace-sum with differential NMO, Quality control, Amplitude recovery, Deconvolution, Velocity analysis, NMO corrections, Mute, Trace weighting, Stack, Mixing, Filter, Balance.

  • During Austral Summer1991-92 the National Institute of Oceanography and Applied Geophysics - OGS conducted marine geological and geophysical surveys over the Antarctic Peninsular and the Bransfield Strait. During this cruise approximately 3407 km of 30-fold multichannel seismic reflection (MCS) data were collected in the Antarctic Peninsular and the Bransfield Strait between longitudes 50 and 78 degrees West, and latitudes 60 and 68 degrees South. The surveys were carried out by the research vessel OGS Explora. The digital MCS data were recorded on a SERCEL SN 358 DMX system. The source consisted of an airgun array with a total volume of 71.96 litres fired approximately every 50 meters into a 3000 m cable consisting of 120 hydrophone groups towed at an average depth of 12 m. A GPS + TRANSIT satellite receiver system was used for the navigation. Processing of the data generally followed a conventional sequence: Reformat, Trace-sum with differential NMO, Quality control, Amplitude recovery, Deconvolution, Velocity analysis, NMO corrections, Mute, Trace weighting, Stack, Mixing, Filter, Balance.

  • During Austral Summer1991-92 the National Institute of Oceanography and Applied Geophysics - OGS conducted marine geological and geophysical surveys over the Antarctic Peninsular and the Bransfield Strait. During this cruise approximately 3407 km of 30-fold multichannel seismic reflection (MCS) data were collected in the Antarctic Peninsular and the Bransfield Strait between longitudes 50 and 78 degrees West, and latitudes 60 and 68 degrees South. The surveys were carried out by the research vessel OGS Explora. The digital MCS data were recorded on a SERCEL SN 358 DMX system. The source consisted of an airgun array with a total volume of 71.96 litres fired approximately every 50 meters into a 3000 m cable consisting of 120 hydrophone groups towed at an average depth of 12 m. A GPS + TRANSIT satellite receiver system was used for the navigation. Processing of the data generally followed a conventional sequence: Reformat, Trace-sum with differential NMO, Quality control, Amplitude recovery, Deconvolution, Velocity analysis, NMO corrections, Mute, Trace weighting, Stack, Mixing, Filter, Balance.

  • During Austral Summer1991-92 the National Institute of Oceanography and Applied Geophysics - OGS conducted marine geological and geophysical surveys over the Antarctic Peninsular and the Bransfield Strait. During this cruise approximately 3407 km of 30-fold multichannel seismic reflection (MCS) data were collected in the Antarctic Peninsular and the Bransfield Strait between longitudes 50 and 78 degrees West, and latitudes 60 and 68 degrees South. The surveys were carried out by the research vessel OGS Explora. The digital MCS data were recorded on a SERCEL SN 358 DMX system. The source consisted of an airgun array with a total volume of 71.96 litres fired approximately every 50 meters into a 3000 m cable consisting of 120 hydrophone groups towed at an average depth of 12 m. A GPS + TRANSIT satellite receiver system was used for the navigation. Processing of the data generally followed a conventional sequence: Reformat, Trace-sum with differential NMO, Quality control, Amplitude recovery, Deconvolution, Velocity analysis, NMO corrections, Mute, Trace weighting, Stack, Mixing, Filter, Balance.

  • During Austral Summer1991-92 the National Institute of Oceanography and Applied Geophysics - OGS conducted marine geological and geophysical surveys over the Antarctic Peninsular and the Bransfield Strait. During this cruise approximately 3407 km of 30-fold multichannel seismic reflection (MCS) data were collected in the Antarctic Peninsular and the Bransfield Strait between longitudes 50 and 78 degrees West, and latitudes 60 and 68 degrees South. The surveys were carried out by the research vessel OGS Explora. The digital MCS data were recorded on a SERCEL SN 358 DMX system. The source consisted of an airgun array with a total volume of 71.96 litres fired approximately every 50 meters into a 3000 m cable consisting of 120 hydrophone groups towed at an average depth of 12 m. A GPS + TRANSIT satellite receiver system was used for the navigation. Processing of the data generally followed a conventional sequence: Reformat, Trace-sum with differential NMO, Quality control, Amplitude recovery, Deconvolution, Velocity analysis, NMO corrections, Mute, Trace weighting, Stack, Mixing, Filter, Balance.

  • During Austral Summer1991-92 the National Institute of Oceanography and Applied Geophysics - OGS conducted marine geological and geophysical surveys over the Antarctic Peninsular and the Bransfield Strait. During this cruise approximately 3407 km of 30-fold multichannel seismic reflection (MCS) data were collected in the Antarctic Peninsular and the Bransfield Strait between longitudes 50 and 78 degrees West, and latitudes 60 and 68 degrees South. The surveys were carried out by the research vessel OGS Explora. The digital MCS data were recorded on a SERCEL SN 358 DMX system. The source consisted of an airgun array with a total volume of 71.96 litres fired approximately every 50 meters into a 3000 m cable consisting of 120 hydrophone groups towed at an average depth of 12 m. A GPS + TRANSIT satellite receiver system was used for the navigation. Processing of the data generally followed a conventional sequence: Reformat, Trace-sum with differential NMO, Quality control, Amplitude recovery, Deconvolution, Velocity analysis, NMO corrections, Mute, Trace weighting, Stack, Mixing, Filter, Balance.

  • During Austral Summer1991-92 the National Institute of Oceanography and Applied Geophysics - OGS conducted marine geological and geophysical surveys over the Antarctic Peninsular and the Bransfield Strait. During this cruise approximately 3407 km of 30-fold multichannel seismic reflection (MCS) data were collected in the Antarctic Peninsular and the Bransfield Strait between longitudes 50 and 78 degrees West, and latitudes 60 and 68 degrees South. The surveys were carried out by the research vessel OGS Explora. The digital MCS data were recorded on a SERCEL SN 358 DMX system. The source consisted of an airgun array with a total volume of 71.96 litres fired approximately every 50 meters into a 3000 m cable consisting of 120 hydrophone groups towed at an average depth of 12 m. A GPS + TRANSIT satellite receiver system was used for the navigation. Processing of the data generally followed a conventional sequence: Reformat, Trace-sum with differential NMO, Quality control, Amplitude recovery, Deconvolution, Velocity analysis, NMO corrections, Mute, Trace weighting, Stack, Mixing, Filter, Balance.

  • During Austral Summer1991-92 the National Institute of Oceanography and Applied Geophysics - OGS conducted marine geological and geophysical surveys over the Antarctic Peninsular and the Bransfield Strait. During this cruise approximately 3407 km of 30-fold multichannel seismic reflection (MCS) data were collected in the Antarctic Peninsular and the Bransfield Strait between longitudes 50 and 78 degrees West, and latitudes 60 and 68 degrees South. The surveys were carried out by the research vessel OGS Explora. The digital MCS data were recorded on a SERCEL SN 358 DMX system. The source consisted of an airgun array with a total volume of 71.96 litres fired approximately every 50 meters into a 3000 m cable consisting of 120 hydrophone groups towed at an average depth of 12 m. A GPS + TRANSIT satellite receiver system was used for the navigation. Processing of the data generally followed a conventional sequence: Reformat, Trace-sum with differential NMO, Quality control, Amplitude recovery, Deconvolution, Velocity analysis, NMO corrections, Mute, Trace weighting, Stack, Mixing, Filter, Balance.

  • During austral summer1994/95, the National Institute of Oceanography and Applied Geophysics - OGS, on board the research vessel OGS-Explora, conducted marine geological and geophysical surveys along the Antarctic Peninsula. The ANGELINA (ANtarctic GEophysical Long range INternational Acquisition) programme was a seismic exploration cruise in the Adelaide Fracture Zone on the Pacific Margin, near Marguerite Bay and Adelaide Island; data were collected between longitude 68 and 74 degrees West, and latitude 66 and 69 degrees South. During this programme 610 km of 20-fold multichannel seismic reflection (MCS) data, 20 second records, 4 ms sample rate, were recorded on a SERCEL SN 358 DMX system. The source consisted of an airgun array with a total volume of 75 litres fired every 75 meters into a 3000 m cable consisting of 120 hydrophone groups towed at an average depth of 10 m. A GPS + TRANSIT satellite receiver system was used for navigation. The Chief Scientist on this programme was: Michele Pipan of the Dipartimento di Scienze Geologiche Ambientali e Marine of the Università di Trieste, via Weiss n.2, 34127 Trieste, Italy. Processing of the data generally followed a conventional sequence: Reformat, Quality control, Amplitude recovery, Deconvolution, Velocity analysis, NMO corrections, Mute, Stack, Mixing, Filter, and Dynamic trace equalisation.