From 1 - 4 / 4
  • Characterization of effective precipitation that occurs at ground of Antarctica region, plays a crucial rules in defining and validating global climate models and numerical weather prediction model. The observatory is designed to be set up at the Italian Antarctic station Mario Zucchelli integrating the current instrumentation for weather measurements with other instruments specific for precipitation observations. In particular, a 24-GHz vertical pointing radar, Micro Rain Radar, and an optical disdrometer, Parsivel will be integrated with the advanced weather stations, radiosoundings and the ceilometer. The synergetic use of the set of instruments allows for characterizing precipitation and studying properties of Antarctic precipitation such as dimension, shapes, fall behavior, density of particles, particles size distribution, particles terminal velocity, reflectivity factor and including some information on their vertical extent. The project is for four years, it started in July 2017 and will be active until July 2020, covering the Special Observation Period (SOP) in the Southern Hemisphere of Year of Polar Predicition (YOPP) period. APP can be provide specific measurements for precipitation occurring over the Antarctic coast at high temporal resolution, in particular specific snow products such as snow rate, snow depth and their water equivalent.

  • Improve understanding of the surface-atmosphere mass andenergy exchanges in coastal Antarctic thanks continuous measurement of a large set of parameters and development of multiscale modelling. Field activities will be carried out year-round at the Korean Jang Bogo (JBG) Antarctic Research Station, located at the coast of Terra Nova Bay, in the vicinity of the Italian Mario Zucchelli Station (MZS). Measurement and analysis of radiation components, atmospheric constituents and energy fluxes, meteorological and micrometeorological parameters, will be implemented jointly by KOPRI, CNR and UniFI, in a way similar to the collaboration already active in the Arctic region at Ny-Ålesund (Svalbard).Measurements will be implemented in such a way to allow Terra Nova Hub (including both MZS and JBG) could became the first WMO-GAW regional station in the Ross Sea area. This will represent an important legacy, contributing to GCOS and WMO programs related to radiation regime and atmospheric composition.

  • The lidar observatory at Dome C, Concordia station, is one of the primary stations of the NDACC network (Network for the Detection of Atmospheric Composition Change). Since 2014 the lidar observes polar stratospheric clouds at a height between 12 and 26 km typically, from early June until the end of Settember. These PSCs play an important role in the ozone chemistry and promote the depletion of the stratospheric ozone layer. The lidar can detect even very thin PSC layers and can provide important information about their chemical composition. The lidar can be used to study formation and dynamical processes and to provide long term records useful for climate studies.

  • The main goal of our proposal is to characterize the surface radiative budget as well as cloudiness which features at the Argentine Bases Marambio and Belgrano II during the YOPP-SH Special Observing Period (SOP) as well as the YOPP Consolidation Phase. Specific objectives to secure our main goal during the SOP will be: 1 - develop a compact Radiation Measurement UNIT (RMU) robust enough to allow continuous measurements in harsh environment through which to make shortwave, longwave observations as well as to record status of the sky. 2 - secure UV measurements at both stations. 3 - develop specific tools to analyse on a daily basis (weakly for clouds) collected data and extract parameters of interest. For radiation these will include QA/QC SW and LW downwelling and upwelling fluxes, diffuse and direct components of solar radiation, UV spectral flux and doses. For clouds these will include, on a continuous base, cloud fraction derived both from radiometric measurement and sky camera observations, cloud type and cloud effect on SW radiation. In addition cloud base (or cloud ceiling) will be obtained by routine observations performed at the two stations. From UV measurements columnar ozone content will be also derived. Moving forward to YOPP consolidation phase, we plan to: 1 - extend dataset and its analysis, start to collect information on seasonal and inter-annual variability, determine Cloud radiative Forcing (CRF) 2 - perform extensive comparison between automatic and visual cloudiness observation methods. They being very useful to better understand quality and value of historical datasets at the two stationsù 3 - make comparison with cloudiness regime of Ross Sea and Antarctic Plateau. Make similar comparison for UV fluxes in the Peninsula and at Concordia.